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In this paper we give a characterization of those n-dimensional subspaces of
Co(X), where X are certain locally compact spaces, for which alternation-elements
are unique. As a consequence we obtain a result on the existence of continuous,
quasi-linear selections for the metric projection in Col X), which represents a
partial solution of a problem posed by Lazar et al. [J. Functional Analysis 3 (1969),
193-216]. Furthermore. we establish a necessary condition for the existence of
inner-radial-continuous selections for the metric projection in normed linear
spaces. From this we deduce results on the nonexistence of inner-radial-con­
tinuous selections for the metric projection. Finally, we give a characterization
of those exponential sums in C[a, h] which admit an inner-radial-continuous
selection for their metric projection.

INTRODUCTlO"

If G is a nonempty subset of a normed linear space E. then, for each x in E,
the set Pc(x) : = {gil e G: . x - go . ~c inf{: x - g : g EO G]} is called the set
of best approximations of x from G. This defines a set-valued mapping Pc;
from E into 2G which is called the metric projection onto G. A mapping s
from £ onto G is called a continaous (respectively. inner-radial-continuous)
selection for Pc, ' if s(x) EO Pc.<x) for each x EO E. and x" ....... x (respectively, (x,,)

C f go ~ a(x - gil): 0 ":.. a I: with x" -> x, where gil EO PC<x)) imply
s(x") ....... s(x). The concept of radial-continuity has been introduced by
Brosowski and Deutsch [5, 6]. The set G is called proximinal (respectively,
Chebyshev) if PcJ,) contains at least one (respectively. exactly one) element
for each x in E.

Continuity criteria for the set-valued metric projection and, in particular,
selection properties have been investigated by many authors in recent years
(see, e.g., Singer [22] and Vlasov [25]). In this paper we consider the question
of existence of (inner-radial-) continuous selections for PG •

Lazar et al. [13] gave the first characterization of those one-dimensional
subspaces G of C(X) \\hich admit a continuous selection for Pc; . They posed
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the problem to characterize the corresponding n-dimensional subspaces.
This question has also been raised in the book of Holmes [10]. Results for
n > I are known only in the case X = [a, b]. In Section I we give an existence
theorem for continuous, quasi-linear selections for P G , for a class of n­
dimensional weak Chebyshev subspaces G in Co(X), where X is an arbitrary
locally compact subset of the real line if n ;?: 2, and show that the assump­
tions on G are essential in a certain sense. The key result (Theorem 1.2) in
this section, which may be of independent interest, is a characterization of
those n-dimensional subspaces in Co(X), where X is a locally compact subset
of the real line if n ? 2, for which each I EO CIJ( X) has a unique alternation
element (Definition 1.1). In the particular case X = [a, b], this has been
proved by NUrnberger and Sommer [18]: their arguments. however, do not
apply in the general situation. As a corollary we obtain the above-mentioned
selection theorem (Corollary 1.3). In the particular case of continuous
selections for P G • Corollary 1.3 has been proved for X compact and n =c I
by Lazar et al. [13], and for X = [a, b] and n arbitrary by NUrnberger and
Sommer [18]. (A particular case is a result of Brown [7] for X = [-I, 1] and
n = 5).

Unlike existence of continuous selections for Pc, each n-dimensional
subspace in any normed linear space admits an inner-radial-continuous
selection for Pc , and more (see [17]). The situation. however, is completely
different if we consider nonlinear sets G.

In Section 2 we give a necessary condition for the existence of inner­
radial-continuous selections for Pc. where G is a proximinal subset in a
normed linear space (Theorem 2.1). As a consequence. we get that. if G is the
boundary of a ball in a normed linear space, then Pc has no inner-radial­
continuous selection (Corollary 2.2). Finally we show that the exponential
sums En in C[a, b] allow an inner-radial-continuous selection for PE if and
only if n = I (Theorem 2.3). "

Notation. For a normed linear space E and x, y EO E, r > 0, we denote
S(x. r) : = {y EO E:: x - }' , = r}, K(x. r) : = {y E E: •x - y ; < r} and [x,
y] : = {ax - (1 - a) y : 0 ~ a ,;~ I). For IE Co(X), P C Co(X) and A C X we
denote by ZU): = {x EX: f(x) = 0]. Z(P): == n {Z(p) : pEP], FA the
restriction off to A and bd A the boundary of A. If gl ,... , gn are in a linear
space then by span {gl ..... gnJ we denote the linear hull of {gl ,... , gn]'

I. LINEAR CASE

In this section we consider the question of the existence of continuous
selections for Pc . where G is an n-dimensional subspace in a space of con­
tinuous functions.
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For a locally compact Hausdorff space X let Co(X) be the space of all real­
valued continuous functionsf on X vanishing at infinity. i.e., for each E ,,0
the set {x EX: j(x) ;-,; E] is compact. endowed with the norm f'
sup{'j(x) : x EX] for eachf", Co(X). If X is compact then we denote Cu(X)

by C(X).

In the following we consider /I-dimensional subspaces G of Co(X), vvhere
X is a subset of the real line if n :> 2. Furthermore the space X shall contain
at least n - I points. The subspace G is called lreak Chebysher, if for each
basis {gl '. g n1 of G there exists an E-' = I such that for each n distinct
points XI x" in X (XI <: ... ,< x," if n; 2) E det(gi(xj)) :" 0. The sub-
space G is called a Chebyshec system on r. where }' is a subset of the real
line. if for each basis {gl ..... g"l of G and each n distinct points )'1 ..... )'" in
Y det(g,( yj)) = 0.

1.1. DEFINITIO:--;. Iffis in Co(X) then gf in Pdf) is called an alternation­
element (A-element) of f if there exist n - I distinct points X o ,.... x" in X
(xo < ... <':: Xn ' if n ~:: 2) such that E(-I)i (f - gf)(X,) = f - gj .

i = 0, I. .... n, E '= 1. The points Xn ..... x" are called alternating extreme
points off - g; .

The next theorem, which may be of independent interest, is the key result
in this section and represents a characterization of those n-dimensional sub­
spaces in COPI) for which we have uniqueness of alternation-elements.

1.2. THEOREM, Let G be Gil II-dimensional subspace of C,lX), where X is a
subset of the real line, if /I . , 2. Then the following statements are equiralent.

(I) G is ll'eak Chebyshel' and each g E G. g == 0. has at most n di.stinct
:::eros.

(2) For each fE coe\') there exists exactll' one alternation-element gf in
Pdj)·

Proof We show that (I) implies (2). Therefore we assume that (I) holds.
First we show that eachfE CU<X) has at least one A-element in PcCf).

Let no!. For fin G statement (2) is trivial. Therefore letfbe in C(l(X)G
and G = span{ gl]' Let y be the only zero of gl . We choose a neighborhood
basis (lJ,) of y such that the sets v., are open and small enough that gl is
linearly independent on K, = X'·,v.,. The neighborhood basis (UJ is a
directed system. if we order it by inclusion. For each. we approximate f on
K" by G, = {g K, : g E G] with respect to the norm ' h', = sup{ h(s) :

X E K,: for each h E CoCK,). Since G is a Chebyshev system and \veak
Chebyshev on K" by Bram [4] for Pc (f) = fg,]. there exist points Xo '. XI'

in K, such that d -I)i (f - gx)('x» = i f - g",. i = 0, 1. E., =c i 1.
Since G is a finite-dimensional subspace by standard arguments (gJ has a
subnet converging to a function gf co G. where g, = g, !K, with .~, E G.
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Passing to a subnet we also may assume that for each.); we have E~ = E for
some E = = l. If X is compact then we may assume that for each i = O. I
(xi') has a subnet converging to a point Xi E X. If not. since X is locally
compact, X can be imbedded in its one point compactification Xu {Xl] and
Co(X) may be considered as a subspace of C(X U {x,j) by defining h(w) = 0
for each hE Co(X). Therefore we may assume that for i = O. I (x;,) has a
subnet converging to a point Xi'= Xu {xl. Passing to subnets and taking
limits we get E( _I)i (f - gf)(X,) = :f - gf' • i = O. I. E = ==1. The points
Xi. i == 0, 1. cannot be equal to x. since J - gf .... O. Furthermore, since
for each g E G we have If - g K I, ;;:~I~ g, i , • we get by taking limits
,.r - g ,<,; f - gf' for each g ~ G. i.e.. gf EO Pu(f). Therefore gf is an
A-element off

Ifn > 2. then since G is weak Chebyshev by a result of Deutsch et al. [8]. it
follows that for eachfE Co(X) there exists an A-element off

Now we show that for eachf EO Co(X) there exists exactly one A-element in
PdJ). This is done by contradiction. Assume that there exists a function
f EO CII(X)\G which has two distinct A-elements go, gl in Pc;( j). We may
assume that gl = O. Therefore there exist Il - I distinct points XII"'" X n

(respectively. Yll •.... )'n) in X (xI) < ... < x" (respectively. Yo < ... < y,,), if
n : 2) such that

(a) (_I)i f(xi) = : f', i =c 0, .... n (respectil'ely. E( _1)i (f - go)( Yi) =

f - gIl . i = 0..... 11. E = =1). From this it follows

(b) (-I )i gO(.ri) ): 0 and E( - 1)i go( Yi) :0( 0, i = 0,..., n.

Firs~ we consider the case 11 == I. We may assume that go(x,,) = 0 or
go(x1 ) = 0 (respectively. goCro) = 0 or go(h) = 0), otherwise we would have
a contradiction to the fact that G is weak Chebyshev. Let E = I. We first
consider the case when gixo) = 0 ~ go(yl)' If go(xl ) = 0 or g,l Yl) = O. then
gIl has t\\O distinct zeros, and if go(.rl ) < 0 and go( Yl) '> O. we have a contra­
diction to the fact that G is weak Chebyshev. Now we consider the case when
go(xo) = 0 = gll(Yl)' Then XII ='= Y1, otherwise by (a) go(xo) = gO<h) > 0,
but then go has two distinct zeros. which is not possible. The other cases
follow analogously. Similar arguments hold in the case E = -l.

Now we consider the case 11 > 2. First we show that

(c) there does not exist a function g EO G. g =-' 0, with the property
that there exist Il -- 3 distinct points t l < ... < ("+:) such that

(-1 )i"-1 g(t;) :o~ 0, i = I, ... , II - 3.

Assume that there exists a function g E G, g =" O. as in (c). Since each g E G,
g ~ O. has at most n distinct zeros, there exists a point Y1 E {t l , ... , t n+I} such
that G is a Chebyshev system on {t l ..... (" .. l},{.l\}. Set {SI ..... s,,': = {tl , ... ,
t""-I}' {Yl·:' such that Sl < ... < S" • and y~ -= t,,_~, r.;= (,,_:: . Since G is a
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Chebyshev system on {.I I ..... .I,,: there exists a basis: gl ..... g,,; of G such
that for each i EO [I •...• 111 we have g;(.~j) = 0, if j ~ i. and g,.(s;) c- I. if
.Ii ~c t j withj odd (respectively. gi(Sj) ~'. - I. iLl; == t. with) even).

Then g = algI -- '" - a"g" \vith {[I ... ·• at< ;;. 0 and the scalars (I; are
not all zero. We define

and for each i E {L..., 11;,

\

. gl(Srl

D= :
i g"(.~I)

gl\Sn) !.
gn(snl i

IgM,1 ... g,t,,) g,1 )',1 g,I,,-,1 ... g,I',-, I g,(." ,) g,i',,)

D
j

= g)SI) "'gnCS;lgn(Yl)gnCSj'l) "·gnCSi-l)g,.(si+l) g)s,,)

where .II <.:: ... <.Sj < YI < Sj_l <.. ... < Si_l <.:: 5;_1 < '" < .I" . Since G is
weak Chebyshev, we have DD i ::':0: 0, i = I,.... n, and it is easy to verify, that
from this it follows that for each i E p,..., 11} g,( J'l) < 0. if YI = r with.i odd
(respectively, g,.( J'1) ;:?o 0. if YI = tJ with} even).

Therefore, since g(tJ) ;;: O. if j even (respectively. g(tj) < O. if j is odd) we
get g(Y1) = ([lgl(YI) ~ ... - a"g"(YI) = 0. Since the real numbers algI
(h)..... all g,,(YI) have the same sign. it follows that

(i) for each i E p ..... 11: with ai = ° we have g;(.l'l) = O. Now \\e
define for each i E {I. .... 11; and each t >.: .I" . where t E T.

I
gl(SI) ... g1(Si-l) gMH) ... gl(Sn) gl(t) I

D(t) = : : .
I g"iSll ... g,,(Si-1) g,,(Si-1) ... g,,(sn) g,,(t)

Since G is weak Chebyshev. \I·e have for each i E {l.. ... 11: and each t· Sn •

where t E T, DDi(t) ~?: 0. and it is easy to verify that from this it follows that

(ii) if Y2 = t j with j odd (respectively. j even). then for each t' ST!'

where t E T, g,.(t) -;: 0 (respectively, g,.(t) ",:: 0) for i E (I.. ... 11; with .I; < hand
gi(t) ~ 0 (respectively. g,.(r) ;;:;: 0) for each i E {L. ... 11} with .Ii :::: .1'1' )\;ow we
define for each i,j E {I, .... 11; with i <j the determinant D jj by

Ig,i,,) ... g,i',., I gM,. ,I g,I" ,) g,I".,) ... gM,,) g,()',) g,1 )',) •

g )51) '" g,,(Si_l) g,,(S',l) g,,(Sj_l) R,,(Sj-J) .. , g ,,(.In) g n(.r~) g)J'3) i.

Using (ii), a simple calculation shows that for each i,j E {l,... , 1I} with i <j
DD'ij = ! gi( Y2); gl Y:l)! - : gl.r~) . g,( Y3)1 . Since G is weak Chebyshev it
follows that
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(iii) for each i,} E {I,... , n] with i <}
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We assume that Y2 = tj with} odd (The other case follows analogously). By
scaling with positive scalars we may assume that for each ai C"-OC 0 [ g;( Y:1)! = I,
since if gi(Y;J) = 0 for some i E {I,.... n} with ai 7'= 0 the function gi would
have n ~ 1 distinct zeros at ({s) ,..., sn} U {Yl , Y:\})\{Si}, which is a contradic­
tion. We remark that after this procedure statements (i)-(iii) remain valid.
Then from (iii) it follows that

(iv) for each i,}E{I, ... , n} with i <}, gi(Y2)i:(; g,(Y2) I • Set I) =
{i: Si < y) , ai =1= OJ, 12 = {i : Si > Y) , ai 'F O} and let k be such that I gl.·( Y2)!
== min{' g,( )'2)1 :} E I 2}. Then from (iv) it follows that

0:(; g(Y2) = L ai : gi(Y2) - L aj ! giC1'2)
iEI1 jEl2

:(; (L ai - L aj). g/;(Y2) = g(Ya) g,lY2) "'::; o.
'iEI1 i E /-}.'

If I) == z or 12 = 0 then g/;(Y2) = 0 and the function g/; has n --, I distinct
zeros at ({s) ,... , sn} U {Yl, Y2})\{s/;}, which is a contradiction. Therefore we
may assume that I) 7'= 0 and 12 ± 0. Now, if there exists a number i E I)
with [gh'2) 1 < I giY2)[ ; then we have

o :(; g(Y2) = L ai giCr2) - L aj : g,(Y2);
i::[l jE!'!.

< (L ai - L aj)' g/;(Y2) < O.
'jEll ;E/z.·

which is a contradiction.
Otherwise for each i E I) we have' gi(Y2)i = . g/;(Y2) and therefore from (ii)

it follows that giCh) = -g/;(Y2) and g;(Y3) = I = -g,,(y:J But then from
(i) it follows that the function gi --'- g/; is not identically zero and has at least
n + I distinct zeros at ({s) ,..., sn} U {y) , h . )'3l),{Si, s,J which again is a
contradiction. This shows (c).

Now let E = I. If Xi = J'i • i ,== 0, ... , n, then by (b) go has n + 1 distinct
zeros at X o ,... , X n , which is a contradiction. Therefore we may assume that
X; <)'i for some i. If)'j < Xj for some} then by (b) the function go has alter­
nating sign at the n -;- 3 points Yo < ... <)'j < Xj < ... < Xi < Yi < ... <
Yn if j < i (respectively, at X o < ... < Xi < Yi < ... <)'j < Xj < ... < Xn

if j > i). But this is a contradiction to (c). If -';+2 < JO; for some i then by (b)
again go has alternating sign at the n T 4 points Xo < ... < Xi-2 < )'i <
... < Yn, which is a contradiction to (c). Therefore \ve have Xi 0( Yi 0(
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.\',. ~ • I a..... 11. II here the points X",] and X" ... ! are omitted. Now we order
the points .\'1) ......\'" • Yo ..... r" and get points .1 1 .I·e .I'~ 1',._ I

.1",] ,I,,_~ such that

(-I)' ]go(s,) >a.i~' 1..... I1--2and(-·I)' IgoU,) ·a.i,2..... n I.

Then by (a) and (b) we have the following.

(d) If.l', = ~'i for some i EO [2. .... n] then gO(Si) = goUi) = aand ~"_I .~

.Ii' 5,"': .1',_]. If 5, = Si_] for some i EO {2..... nl then gOUi) c gO(Si-l) = a
and.l', : ,I, ~~c .1',_] -< 5i ] . If .1'1 ..~ Se then go(sd = a = go(s~) and s~ < ~'~ .
If 5"-1 .~. .1'". ~ then goU,,-]) a - gO(sn-2) and .1',,_] .:; 5"_1 .

In the following argumentation. where we show that our assumption leads to
contradictions. (d) will be essential.

If .1 1 .I~. 5~ s:j ..... 5,,_,1 .I'"._~. then go has 11- I distinct zeros at
{s] . .1':: ..... s,,_~·:. VI hich is a contradiction. Otherwise we consider the first
11 - 1 points U] ..... U"~1 from ;SI ..... S,,_.! • 5~ 5,,+11 for which we have
U] '. '. U".1 and (- ])il go(u,) ;.; a. i c_ I. /1- I. Since each g 0. G.
has at most /I distinct zeros. there exists a point y EO {u] ..... un _]·: such that G
is a Chebyshev system on {u] ..... U".-I·:,{Y;. Analogously as in the proof of
(c)(i) Ive can show that there exists a function g" EO G. gl.· a. such that
g,.(y) C~ aand therefore g", has /I distinct zeros at {u l ..... u,,-];"{ukl.

Ifr ~ U]. then there exist again/l - I distinct points l\ ..... 1'".;] such that
·:c] l'»_I·::U~ ..... U"I:U:.\"_~:. l'] < '''1'''-1 and (-l)igo(c,l a.
i c I /I I. Again concluding as in the proof of (ci) we can ShOll that g/,
has a further zero in .I'".~ and therefore at least /I 1 distinct zeros. which is
a contradiction.

If r = UI then we conclude as follows: In this case y' ~', or.r .1. for
some i E {2..... /I I:. If .I'i c. ~', • then guLr) ~ a. but analogously as in the
proof of (ci) we can show that gu(.r) = a. which leads to a contradiction.

If .1', c~ 5 i • then there exists again a set of 11 . 1 distinct points {I'I .....

l',,_]~. containing {u] ..... U"-l': {yl. but not containing the point y. such that
l'] < ... <. l',,_] and a(-I)i ]g,J!l',) ~·a. i = I. .... n - I, a = +1. Again
concluding as in the proof of (ci) we can show that gl. has a further zero in
{e] .... , 1',,]: ({u l ..... u,,_]: U : rn and therefore at least n - I distinct zeros,
which is a contradiction.

Now let E = -I. If Yi <.: X,] for some i. then by (b). go has alternating
sign at the 11 -- 3 points Yo <: ... < .1', < X'-1 < ... <.: X" • which is a contra­
diction to (c). If X'-1 < y, for some i. then by (b) gil has alternating signs at
the /I .. 3 points X,) <: ... '. Xii <.: Yi" ... <.. .1'" . which again is a contra-
diction to (c). Therefore lIe have X'_1 .1', < X'_I' i = a.... ,n. where the
points .Y. 1 and x,,_] are omitted. We order the points X o ..... x" . .1'" .... , y" and
get point,; .1'] • ,1\ .1',. IS". I such that ( . I)' I go(s) . a. i I .....



CONTINUOUS SELECTIONS 219

n - Land (-l)il gOUi) ;>- 0, i ~~ 1, ... ,11 - I. Then by (a) and (b) \ve have
the following.

(e) If 5, = Si for some i E {I, ... , n], then go(5i) = goUi) .c= 0 and S'_I <:
5; = Si < 5'_1' If Si = 5i-'1 for some i E {I ..... 11~. then go(S;) = 0 C_. go(5i-l)
and 5i < Si = 5i+! < Si-:-I .

Statement (e) will be essential in the following argumentation. We consider
the n + 1 distinct points 51 ,.... 5,,-1 for which (-I); I go(5i) > o. i .-. 1.. ...
n - I. Since each g E G, g =Fe 0, has at most 11 distinct zeros. there exists a
point Y E {51"'" 5,,+11. say J =. 5i' such that G is a Chebyshev system on
{SI .... , 5"-11JJ]. If 5i = Si. then go(y) =i-. o. but analogously as in the proof
of (ci) we can show that go( y) == 0, which leads to a contradiction. If S,' S,.

then analogously as in the proof of (ci) we can show that there exists a func-
tion g,: E G, g" ··0, with II distinct zeros at {.I'I S"_I: {5k':. Furthermore
there exists a set of 11 - I distinct points {l't 1"/1-1)' containing ;51 .... ,
5'i-!l',{y], but not containing the point y. such that 1"1 <: , .. <.I"'i-! and
a( -I)i I gO(Vi) ? O. i = 1, .... 11 - I. a == ::i:: I. Then again concluding as in
the proof of (ci) we can show that g", has a further zero in {I"I ..... I"n_l: .
({51 ..... S,,-i-l) {y)) and therefore g". has at least 11'- 1 distinct zeros. which is
a contradiction. This shows that (I) implies (2).

Now we show that (2) implies (I). First we show that (2) implies that G is
weak Chebyshev. let II ~ I. If X is compact then we setf = I. Since by (2)
there exists an alternation-element gl E Pdf). the function gl can not be
identically zero and gl "? O. Therefore G = span{ gil is weak Chebyshev.
Therefore assume that G is not compact. Since X is locally compact it can be
imbedded in its one point compactification Xu {Xl] and CO<X) may be
considered as a subspace of C(Xu {Xl)) by defining h(oo) = 0 for each
h E Co(X). Now we choose a neighborhood basis (UJ ofx such that the
C:s are open. The neighborhood basis (U,j is a directed system if we order
it by inclusion. By Tietze's Lemma for each .'- there exists a function fi E C
(Xu roo}) such thatf, == Ion X··Ui • ~,(x) = 0 and 0 ,:;;1, >. I. Since for
each :l. we havef, :x E Co(X) and from (2) it follows that there exists an alter­
nation-element g, E Pdj~ ;x), obviously g, > 0 on )(' C, and g, ~ 0, other­
wise g, would not be an alternation-element off, . Therefore by scaling we
may assume that for each '- gi = I. Since G is finite dimensional by
standard arguments (g,) has a subnet converging to a function gl E G,
gl .~~ O. such that gl ~ O. This shows that G ~ span{ gl': is weak Chebyshev.
If 11 ? 2 then by a result of Deutsch et al. [8] it follows that if for each
fE Co(X) there exists an alternation-element gf E Pdf). then G is weak
Chebyshev. This shows that (2) implies that G is weak Chebyshev.

Now we show that (2) implies that each g E G. g ='. O. has at most II distinct
zeros in X. Assume that there exists a function go E G, g(1 =' 0, which has
II -~ I distinct zeros Xo ..... x" in X(xo < ... <: X/I • if 11 > 2). By scaling \\e
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may assume that go I. \Ve ~ho\\ that there exists a function f In C,,( Xl.
which has 0 and gO) as A-elements. Since X is a Hausdorff space there exist
neighborhoods C, of x, . i 0..... 1/. which are disjoint. Then there exists a
function/in Cocn with the properties, f' c I. (~~ I )'f(x,) ~ I. i ~ 0..... 1/.

o :: :f(x) mint I ~ - go(x). I: for x fCC C; . iff(x,) I. max: -I~ go(x). I;
fIx) Ofor.YEL,.if.{(x,) landf(x) OforxcoYUiU,:i 0.....
1/:. Then the functionsfandf~ go obviously ha\e n I alternating extreme
points x" ..... X" and I F I f -- go . Furthermore we have that 0 and
go are in Pc;( fl. otherwise there exists a function g c G such that f --- g
f. This implies (-\)IU-g)(Xi) <.(-I)'f(x,) and therefore (-I)'

g(x,) -0 O. i 0..... 1/. For 1/ =- I this obviously is a contradiction and for
1/ ". 2 \\ e also get a contradiction. since by a result of Deutsch et al. [8] and
Zielke [26]. in a \\,eak Chebyshev subspace G there does not exist a function
g fCC G and distinct points X" < ... .: x" in X such that (_l)i g(x,) < O.
i - 0..... 1/. Therefore \\e have shown that (2) implies (I). and this completes
the proof.

In the special case X = [a. b]. Theorem 1.2 has been proved in Nurnberger
and Sommer [18]. Their methods. however. do not apply to the general
situation of Theorem 1.2.

Let E be a real vector space. G a subspace of E and s a mapping from E
onto G. Then s is called quasi-IiI/ear, if for eachf fCC E. g E G and real numbers
a and b we have s(af - - bg) .~. as(f)- bg.

Csing Theorem 1.2 we now are in position to prove the following result
on the existence of continuous. quasi-linear selections for Pc, .

1.3. COROLLARY. Let (j hI' 1/I1 n-dilllen.l'ionall\'eak Chebysha subspace of
CoP). lrherc .l( is a subset of the rl'a/ line (f n . 2. such that each g'= G,
g = O. has at II/ost n distincT ::1'/'0.1' in X. Then there exists a continuous. qua.\i­
Iinl'Qr seleCTiol/ for PI, .

Proof From the properties of G and Theorem 1.2 it follows that eachfin
CorY) has a unique A-element gf in Pdf). We define the selections by
s(f) - g, for eachfin c,kn.

(I) We show that s is continuous. If not. since G is finite dimensional.
there exist!,,, -~fand s(I,,) -~ g with sUI ~.. g and g fCC Pdf). Furthermore
for each 11/ there exist n ~- I distinct points X ,{' ..... x,,'" in X(xo'" < ... <

x,,'" if 1/ ·2) such that E,,( -1)i (f" -- sU;,,))(x,''') = ,/", - sU;,y. i c=

0..... /1. Eo" = ~_l. Similarly. as in the proof of Theorem 1.2. by passing to
subsequences and taking limits we get E( -I)' U - g)(X;\ ... 'f - g .
i -~ 0..... 11. E ~= L where X o ..... x" are distinct points in X (xo <: ... X"

if n 2). Furthermore. since for each ms(fJ fCC Pdf,,) and /,,, ~ f we have
g E PI,tn. as it is well known. Therefore g is an A-element offwith s(f) . z.
which is a contradiction to the uniqueness of A-elements.
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(2) We show that s is quasi-linear. Let IE Co(X), g EO G and real
numbers a and b be given. Since by definition s(f) is an A-element of f,
there exist distinct points X o ,... , X n in X (xo < ... < X n if n ~ 2) such that
E( _1)1 (f - s(f»(x,) = !f - s(fr, i = 0, ... , n, E = ± 1. Then

E( _1)i (al --, bg - (as(f) -+- bg»(;\J

= aE(-l)i (f - S(f)(Xi) = a' 1- s(fY = E' af - as(f)ii

= E:' al + bg - (as(f) --'-- bg)' . i == 0, .... n. E = =1. E = ± I.

Furthermore, as it is well known, we have as(f) --:- bg EO aPG(f) --:- bg =

PG(af - bg). Therefore as(f) --'- bg is an A-element of af -+- bg. But since by
definition s(af -L bg) is also an A-element of af --:- bg, if follows from the
uniqueness of A-elements that s(af --:- bg) = as(f) .:. bg. This completes the
proof.

We remark that for n = I (G = span{gl}) Corollary 1.3 also holds, if we
only assume that G is weak Chebyshev and bd Z(gl) contains at most one
point. Because in this case we consider the metric projection from ClK) onto
the restriction of G to g, where.Y : = (X,z( gl» u bd Z( gl), and extend the
existing continuous selection (according to Corollary 1.3) by zero to X.

Corollary 1.3 has been proved for continuous selections of PG by Lazar
et al. [13] for X compact and n = I, and by Nurnberger and Sommer [18]
for .\;'- [a. b] and n arbitrary. from which a result of Brown [7] for X =

[-I. I] and n = 5 follows, using different kinds of approaches. Nevertheless
their arguments do not apply to the general situation of Corollary 1.3.

I n the case X = [a. b] Corollary 1.3 was the crucial key in 't\i urnberger and
Sommer [19] to give a complete characterization of continuous selections of
the metric projection for spline functions.

We remark that the conditions on G in Corollary 1.3 are essential in a
certain sense. because in Nurnberger [16], it is shown that a necessary
condition for an n-dimensional subspace G in C[a. b]. which admits a
continuous selection for PG • is that G is weak Chebyshev. Furthermore
Sommer [23] has shown that a necessary condition for an n-dimensional
weak Chebyshev subspace G in C[a, b], for which no g E G. g =-' O. vanishes
on an interval and which admits a continuous selection for Pc; . is that each
g E G. g ecce O. has at most n distinct zeros in [a. b].

Finally we give some examples of n-dimensional subspaces C in Co(X),
which fulfill the condition in Theorem 1.2 and Corollary 1.3.

I. 7. EXAMPLES. (I) Several examples of n-dimensional subspaces in
C[a, b]. which fulfill the conditions in Theorem 1.2 and Corollary 1.3, can be
found in Brown [7] and Niirnberger and Sommer [18]. A standard example is

G = span{gl ,... , gn} C qO. I]. where gl,) = Xi, i = I, .... n.
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(2) Let: gl .... , g,,: be a Chebyshev system of continuous real-valued
functions on IR and let go be in Co(lR) such that gug; E Cu(lR). i-I ..... n. and
goer) =0 for some yE'f{ and go(.') ',0 for XEIR',{y} (e.g.. g,(x) ~- x·- I .

i = I..... n. and go(.') = ( Ie) x 2 for x E [-I. I] and go(x) = I 'e"" elsewhere).
Then G . span{ gog! ..... gog,,: is an n-dimensional subspace of e,m). and
by standard arguments (compare Jones and KarJovitz [II]) G fulfills the
conditions in Theorem 1.2 and Corollary J.3. and therefore \\e have the
uniqueness of alternation-elements and the existence of a continuou~.

quasi-linear selection for Pc, . The same holds. if \\e consider the restriction
of G to any closed subset of the real line. containing at least n .. , I distinct
points. Similar arguments give us examples of n-dimensional subspaces of
Co(X) for arbitrary (not necessarily closed) subsets of the real line.

2. NO~lI"'EAR CASE

As \\e have seen in Section J. not every n-dimensional subspace G in a
normed linear space admits a continuous selection for Pc, . However, this
(and even more) is true for inner-radial-continuous selections for Pc (see [17]).
But the situation is completely different. if we consider nonlinear sets. as we
will see in the following.

First we give a necessary condition for the existence of inner-radial­
continuous selections for Pc; in arbitrary normed linear spaces.

A set S in a normed linear space E is called star shaped about X o in E. if for
each x in S we have [xo ,x] C S.

2.1. THEOREM. Let G be (/ proximinal subset in a normed linear ~pa('e E.
If there exists an inner-radial-continuous selection s for Pc then for each x in E
and each go in Pr;(x) we hare

[go. sex)] C sex. d(x. G)).

Proof Let s be an inner-radial-continuous selection for Pc and x E E.
go E Pr;(x). 0 <: a <: I. We show that for each 0 <: b <: 1 we have

(I) s( gu ~ b(x - gu)) E Sex. d(x. G)) n S( go - b(x - go). d( go b
(x - go), G)). Let 0 ~ b <; I be given. Then. of course. s( gu - b(x - gu») is
in S( gu b(x - go)' d( gn - b(x - go), G)). Therefore it remains to show
that s( go~- b(x - gu)) is in sex, d(x. G)). Since obviously d(x, G), ,\'- \
(go - b(x - go)) Iwe show that; x - s( go - b(x - go»): ",.: d(x. G). Assume
that

(2) I x - s( go ., b(x - gu)): ..' cl(x. G). Since go E Pr.\xl. by the proof
of Lemma 2.1 in Singer [21. pp. 364]. go E Pc.< gil : b(x - go». Furthermore
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(3) bd(x. G) = b ! x - go' =. gu -'-- b(x - go) - go i = d(go - b
(x - go), G).

Then by (2) and (3) it follows that

, go ~ b(x - gu) - s(go + b(x - gom

= :(x - go ~ b(x - go» - (x - s(go + b(x - go»)'

::;:: I x - s( go -_. b(x - go»' - : x - go - b(x - go)

> d(x. G) - (I - b) d(x, G) = bd(x. G) = d( go ~ b(x - go)' G).

But this is a contradiction to the fact that s( go - b(x - go)) E Pc< go - b
(x - go»' Therefore we have that s( go - b(x - go)) E Sex. d(x. G» and (I)
(I) holds.

Since by an observation of Klee [12] (for a proof see Brosowski and Deutsch
[6]) the set Sex. d(x, G)) n S(go + b(x - go), d(go --i-- b(x - go). G» is star
shaped about go . from (I) it follows that for each 0 -s: b ,<;; I ago - (l - a)
s( go + b(x - go)) E Sex. d(x, G» (0 ,,:::; a < I).

Therefore for each 0 ~ b oS I

(4) '! X - (ago - (I - a) s( go + b(x - go», = d(x. G)(O cO;; a ,cO;: I).

Now let (x n) be a sequence in {go + b(x - go): 0 ,,:::; b ,,:::; n, i.e.. x" = go +
bn(x - go) with 0 ,,:::; b" "': I, which converges to a point x E E. Then by (4)
for each n we have

:x - (ago ~ (I - a) s(x n )) , = d(x, G).

Since 5 is inner-radial-continuous and (x,,) converges to x we have

i x - (agu - (1 - a) sex»~,! = d(x, G).

This is true for each 0 ,,:::; a s: I and therefore ago - (I - a) sex) is In

sex, d(x, G», i.e.. [go, sex)] C S(x, d(x. G».
This completes the proof.
Theorem 2.1 has been proved for continuous selections in Niirnberger [17].

2.2. COROLLARY. Let G be the boundar), of a ball in a normed linear
space E. Then there exists no inner-radial-continuous (in particular no con­
tinuous) selection s for P G •

Proof Let G = S(xu , 1') = {g E E: 1 X o - g , = r} for some X o E E and
I' :> O. Then G is proximinal. since for each x E E we have go E p(;(x),
where go = Xu ~ (I' i x - Xo ·:)(x - xu). because ~ x - go , =! x - Xu -

(r t I X - X o i)(x - xo)1 = i X - Xo - 1" = ',x - x o ·. - ! -'0 - g 1 ,,:::; 'I x - g;
for each g E C. Since PG(xo) c= G we have that 5(Xo) and 2xu - s(xu)
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are in Pc;(xol but obviously [2x" - _\(xo), sIx,,)] et 5(xo . d(xo . e)L H~

Theorem 2.1 we get a contradiction. This completes the proof.
Furthermore using Theorem 2.1 it easily follows that a proximinal subset

e in a strictly convex space admits an inner-radial-continuous selection for
P G if and only if e is Chebyshev. This result can be applied to the generalized
rational functions R",." in LI,-spaces (I < p < :x;). which are always proxi­
minaL but Chebyshev if and only if 1/ 0 (see Blatter [I) and Eflmov and
Stechkin [8)).

Next we consider the metric projection for exponential sums. An exponel/­
tial slim is a function g E C[a. b] which can be represented as g(x)-c L:~l
Pi(X) et ,,,. \vhere Pi E C[a. b] is a polynomial of degree di and t] ..... t r are
distinct. The integer L::-l (di - I) is called the degree of g. By En we denote
the set of all exponential sums with degree less of equal to 1/.

In contrary to the rational functions and the usual exponential sums,
which are Chebyshev in C[a. b] (see Meinardus [15]), the exponential sums
En , as been defined here, are proximinal but not Chebyshev in C[a, b] for
11 c' 2. (see Braess [2, pp. 315)). They represent a frequently investigated non­
linear class of functions.

The next result gives a characterization of inner-radial-continuous selec­
tions for P E,,'

2.3. THEORE\1. The metric projection from C[a. b) ollto the set of exponen­
tial slims Ell has an inner-radial-colltilll1olls selection (f an 011~\' (f n ~~ I.

Proof If n -- 1 then E" is Chebyshev and therefore the metric projection
PE has an inner-radial-continuous selection. If n -::> 2 then from the proof of
Th~orem 8.7 in Braess [3] it can be seen that there exists a continuously
differentiable function f E era. b). which has two distinct best approxima­
tions gl and g~ in PE"en. We construct two sequences U;,,) (respectively,
({,II))' which are in (gl- aU - gtl : 0 <' a < I: (respectively. in :g~

aU - g2) : 0·' a ..~ I;) such that;;" ---->- II" ---->-fand PE/I,,) = fgl; (respec­
tively. PE (/.,,) = {g21). This shows that there does not exist an inner-radial­
continuo~s's'electionfor P E • because if there were an inner-radial-continuous
selections for P E . then w~' would have S(f,,,) c'c gl and sUm) = g2 for each 111
and, since!,,, ---->-/and/,,, ---->-f sUI ,= gl and sUI = g2 . But this is impossible.
since gl = ge .

We define for each 111 functions f", : = gl - (I - Im)(/ - gl) and /," : =

g2- (1 - Im)(/ - gel. \Ve show that PEJf")~' {gl: for each 111. Since
gIEPE"U). by the proof of Lemma 2.1 in Singer [21] gIEPE"U;,,) for each
111. Assume there exists a function il E PEn(I;,.) with .~l ~ gl . Then il E P E"U)

because. if f - gl < r- iI' . then (I - (l:'m)) f - gl ' .~! f" - gl : =
If,,, - it gt - (I - (Im))(f - gl) - il := .'(f - gt) - (I.'m)(f­
gl) f-gl -(1m) f--gl '>if-g] -(l,1I1);f-g] --(1--
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(I;'m))I/ - gl! , which is a contradicion. By Satz 1 in Braess [2] there exist
a :( Xl' < ... < Xn+I :( b such that E( -1); (f - gl)(X;) = il! - gl :" i =
0, .... 11--:- L E = ±l. Then (I - (I/m)),;! - gl 'i = ,;fm - gl : = I!m - gl:,
:;, E( - 1)' (f,,, - gl)(X;) = E( _I)i (f - gl)(Xi) - E( -I)i (l/m)(f - gl)(X;) =

il! - gl . - E( -1)i (ljm)(f - gl)(X;) = II! - gl i - E( -1)i (l /m)(f - gl)(Xi)

?:' :J -- gl ' - (lim):i! - gl. = (l - (lim):! - gIl·
Now E( _1)i (f - gl)(X;) = ! - gj i =!! - gl , = E( -1); (f - gj)(Xi) and

therefore (gj - gl)(Xi) = 0, i = 0.... , n. Since the points a :( X o < ... <
Xn~l 'S;. b are extreme points of! - gl and! - gl , we have (f' - g~)(Xi) =
0= u' - g~)(Xi)' i = 1, ... , n. Then gl - gl has at least 211 zeros, counting
multiplicities. and at most degree 2n. but by Meinardus [15, pp. 167], this is
impossible. Therefore PEn(j;,,)c~ {gjl and analogously, PE"(f,,,) = {g2] for
each !11. This completes the proof.
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