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In this paper we give a characterization of those n-dimensional subspaces of
Co(X'), where X are certain locally compact spaces, for which alternation-elements
are unique. As a consequence we obtain a result on the existence of continuous,
quasi-linear selections for the metric projection in Cy(X), which represents a
partial solution of a problem posed by Lazar ¢t al. [J. Functional Analysis 3 (1969),
193-216]. Furthermore, we establish a necessary condition for the existence of
inner-radial-continuous selections for the metric projection in normed linear
spaces. From this we deduce results on the nonexistence of inner-radial-con-
tinuous selections for the metric projection. Finally, we give a characterization
of those exponential sums in Cla, b] which admit an inner-radial-continuous
selection for their metric projection.

INTRODUCTION

If G is a nonempty subset of a normed linear space £, then, for each v in £,
the set Po(x) :={g,cG: x —g, —inf{ix —g :geG}}is called the set
of best approximations of x from G. This defines a set-valued mapping P
from E into 2¢ which is called the metric projection onto G. A mapping s
from E onto G is called a continaous (respectively, inner-radial-continuous)
selection for P, . if s(x) € P.(x) for each x € E. and x, — x (respectively, (x,)
Ci{gy —alx —g,): 0=<la-- 1! with x,-—x. where g, Ps(x)) imply
s(x,) — s(x). The concept of radial-continuity has been introduced by
Brosowski and Deutsch [35, 6]. The set G is called proximinal (respectively,
Chebyshev) if P.(x) contains at least one (respectively. exactly one) element
for each x in E.

Continuity criteria for the set-valued metric projection and. in particular,
selection properties have been investigated by many authors in recent years
(see, e.g., Singer [22] and Vlasov [25]). In this paper we consider the question
of existence of (inner-radial-) continuous selections for P .

Lazar eral. [13] gave the first characterization of those one-dimensional
subspaces G of C(X) which admit a continuous selection for P . They posed
212
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the problem to characterize the corresponding n-dimensional subspaces.
This question has also been raised in the book of Holmes [10]. Results for
n > 1 are known only in the case X = [a, b]. In Sectton | we give an existence
theorem for continuous, quasi-linear selections for P;, for a class of sn-
dimensional weak Chebyshev subspaces G in Ci(X), where X is an arbitrary
locally compact subset of the real line if # >> 2, and show that the assump-
tions on G are essential in a certain sense. The key result (Theorem 1.2) in
this section, which may be of independent interest, is a characterization of
those n-dimensional subspaces in Cy(X), where X is a locally compact subset
of the real line if » > 2, for which each fe C,(.X) has a unique alternation
element (Definition 1.1). In the particular case X = [a, b], this has been
proved by Niirnberger and Sommer [18]: their arguments. however, do not
apply in the general situation. As a corollary we obtain the above-mentioned
selection theorem (Corollary 1.3). In the particular case of continuous
selections for P . Corollary 1.3 has been proved for X compact and »n == 1
by Lazar er al. [13], and for X = [a, b] and # arbitrary by Niirnberger and
Sommer [18]. (A particular case is a result of Brown [7] for X == [—1, 1] and
n=>5).

Unlike existence of continuous selections for P; ., each n-dimensional
subspace in any normed linear space admits an inner-radial-continuous
selection for P, and more (see [17]). The situation. however, is completely
different if we consider nonlinear sets G.

In Section 2 we give a necessary condition for the existence of inner-
radial-continuous selections for P;. where G is a proximinal subset in a
normed linear space (Theorem 2.1). As a consequence. we get that, if G is the
boundary of a ball in a normed linear space, then P; has no inner-radial-
continuous selection (Corollary 2.2). Finally we show that the exponential
sums £, in Cla, b} allow an inner-radial-continuous selection for P, if and
only if # = 1 (Theorem 2.3).

Notation. For a normed linear space £ and x, y € E, r = 0, we denote
S(x.r):={yeE: x—1y =r,K(x.r):={yeE: x—y,<r} and [x,
yi=fax — (1 —a)y:0<a<1}. For fe C(X). PCCyX)and 4 C X we
denote by Z(f):={xeX:f(x) =0}. Z(P):=nN{Z(p):pe P}, [, the
restriction of fto A and bd A the boundary of 4. If g, ...., g, are in a linear
space then by span {g, ..... g, we denote the linear hull of { g, ,.... g,.}.

1. LINEAR CASE

In this section we consider the question of the existence of continuous
selections for P; . where G is an n-dimensional subspace in a space of con-
tinuous functions,
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For a locally compact Hausdorff space X let C(X') be the space of all real-
valued continuous functions f on X vanishing at infinity, i.e., for each ¢ .- 0
the set {xe X: f(x) > € 1is compact. endowed with the norm [ -
supf{: f(x) : x e X for each fe C(X). If X is compact then we denote C(X)
by C(X).

In the following we consider n-dimensional subspaces G of Cy(X), where
X 1s a subset of the real line if n > 2. Furthermore the space X shall contain
at least # — 1 points. The subspace G is called weak Chebysher, if for each
basis {g; ... g, of G there exists an € .— —1 such that for each » distinct
points x; ..., Xy i X (xy <2 - << x, L ifn 2 2) e det(g{x;) o 0. The sub-
space G is called a Chebysher system on Y. where Y is a subset of the real
line. if for each basis { g, ..... g, of G and each n distinct points 1y ..... v, in
Y det(g,(1;) = 0.

1. DerINITION.  If fis in Cy(X) then g, in Pg(f) is called an alrernation-

element (A-element) of f. if there exist » — | distinct points x,..... X, mXx
(xg < <<x,. if n=2) such that e(—1)(f— gXNx) = f— g
=0 l.... n,e — ~—1. The points x, ..... x, are called alternating extreme

pointsof f — g; .

The next theorem, which may be of independent interest, is the kev result
in this section and represents a characterization of those n-dimensional sub-
spaces in Cy(X) for which we have uniqueness of alternation-elements.

1.2. THEOREM. Let G be an n-dimensional subspace of C(X). where X is a
subset of the real line, if n "> 2. Then the following statements are equivalent.

(1) G is weak Chebyvsher and each
zeros.

g€ G, g = 0. has at most n distinct

&

(2)  For each fe Cy(X) there exists exactly one alternation-element g, in
P f)

Proof. We show that (1) implies (2). Therefore we assume that () holds.
First we show that each f'e Cy(X) has at least one A-element in Pg( f).

Let n === I. For fin G statement (2) is trivial. Therefore let fbe in Cy(X) G
and G = span{g,]. Let 1 be the only zero of g, . We choose a neighborhood
basis (U,) of y such that the sets U, are open and small enough that g, is
linearly independent on K, = X'U,. The neighborhood basis (U,) is a
directed system. if we order it by inclusion. For each x we approximate f on
K, by G, ={g g 1 g€ G} with respect to the norm " A", = sup{ A(s):
xe K, for each h e C(K,). Since G is a Chebyshev system and weak
Chebyshev on K, . by Bram [4] for P; (f) == 1 g,). there exist points " xy°
in K, such that e(—1)(f —gu)(r Y=if—g, ... =0,1.€ = 11.
Since G is a finite-dimensional subspace by standard arguments (§,) has a
subnet converging to a function g,<G. where g, =g, !x with §,€G.
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Passing to a subnet we also may assume that for each x we have ¢, = ¢ for
some ¢ = —|. If X is compact then we may assume that for each i = 0, I
(x;*) has a subnet converging to a point x,; € X. If not. since X is locally
compact, X can be imbedded in its one point compactification X U {0} and
Cy(X) may be considered as a subspace of C(X U {c}) by defining /#(oc) = 0
for each h e Cy(X). Therefore we may assume that for i =0, | (x,*) has a
subnet converging to a point x; = X U {c}. Passing to subnets and taking
limits we get e(— 1) (f — g;){(x,) = ! f—g;. .1 =0. 1. e = —1. The points
x;.i =0, 1, cannot be equal to . since  f— g, 0. Furthermore, since
for each ge G we have |f— g k12— g1, we get by taking limits
‘f—g.< f—g, for each geG, ie. gre Py(f). Therefore g, is an
A-element of £,

If n = 2. then since G is weak Chebyshev by a result of Deutsch er al. [8]. it
follows that for each f'e Cy(X) there exists an A-element of f.

Now we show that for each fe Cy(X) there exists exactly one A-element in
Pi(f). This is done by contradiction. Assume that there exists a function
f€ C(XNG which has two distinct A-elements g,. g, in Pg(f). We may

assume that g, = 0. Therefore there exist n — 1 distinct points x,...., X
(respectively. y,..... ))) in X (x, < - < x,, (respectively, 1, << -+ < 1,). if
n = 2) such that

(@) (—1Vf(x) = f,i == 0. (respectively. e(—1)(f — g)(y,) =
f—g, .i=0,..,n = —1). From this it follows

(b) ('_'l)l go('\'l') > 0 and 6(— I )i g()(.}.i) < 0: = Oa-"s n.

First we consider the case 7 == 1. We may assume that g,(v,) =0 or
go(x1) = 0 (respectively, g4(3y) = 0 or g,( ;) = 0). otherwise we would have
a contradiction to the fact that G is weak Chebyshev. Let ¢ = . We first
consider the case when gy(x,) = 0 == gy(14). [f go(x;) = 0 or g,(+;) = 0. then
g, has two distinct zeros, and if g,(x;) < 0 and gy(),) > 0. we have a contra-
diction to the fact that G is weak Chebyshev. Now we consider the case when
8u(xo) = 0 = gy( ). Then x, ==y, otherwise by (a) go(x,) = go(¥1) >0,
but then g, has two distinct zeros, which is not possible. The other cases
follow analogously. Similar arguments hold in the case e = —1.

Now we consider the case n == 2. First we show that
(c) there does not exist a function ge G. g == 0, with the property
that there exist n -— 3 distinct points r, < --- < 1,,, such that

(=Dl g(r,) 20,7 = Ly n — 3.

Assume that there exists a function g e G, g == 0. as in (c). Since each g € G,
g = 0, has at most n distinct zeros, there exists a point 3y € {t; ...., 1,44} such
that G is a Chebyshev system on {t, ..... fyan{ot Set {sy ..., 8,0 ={t ...
tooqdivyt. such that s, << - <s,.and vy = ¢, 5.1, =1, . Since G is a

640°28/3-3
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Chebyshev system on {s, ... s, there exists a basis {g; ..... g,; of G such
that for each i< {l....n} we have g(s;) =0, if j==i and g(s) — I. if
s; == ¢; with j odd (respectively. g{s;) = — 1. if 5; == 1, with j even).

Then g =a;8, — - - a,g, with a,.....a, > 0 and the scalars a; are

not all zero. We define

[&ls) gl(.sn)

i.gn(sl) gn(sn)é
and for each i e {l..... n},

2i(5y) 7 8u(s;) g 1) &u(s;m) - galsim) &ls—q) - gilsy) |
: : I,
|

D; = : : !
gn(sl) gn(si) gn(.rli) gn(sj-i 1) gn(si—l) gn(S[-H) T gll(sn) :

where sy <0 - < 8 <1y <8 < < Sy <080 << <8, . Since G is
weak Chebyshev, we have DD; >> 0, i = |,.... n, and it is easy to verify, that
from this it follows that for each i e {l,..., n} g(¥,) < 0, if 3, =1 with j odd
(respectively, g{ yp) = 0.1y, = ¢, with j even).

Therefore, since g(t,) =- 0. if j even (respectively. g(z;) < 0, if j is odd) we
get g(3y) = aygfy) — - — a,g.(3,) = 0. Since the real numbers a4 g,
(39)--... a, g:(2) have the same sign. it follows that

(i) for each is{l..n with @, =0 we have g,(y,) = 0. Now we
define for each i e {l..... ny and each ¢t > 5, . where te T,

2i(83) @5 giksiny) o @lsy) gl )
Di(t) = Co-
gn(Sl) gn(si\l) gn(sif—l) gﬂ(sn‘) gn(r)

Since G is weak Chebyshev. we have for each 7 e {l....n} and each ¢ "~ s, .
where r € T, DD{t) > 0. and it is easy to verify that from this it follows that

(i) if ¥, = ¢; with j odd (respectively. j even). then for each 7 - s, .
where t € T, g(t) == O (respectively, g{f) << 0)forie{l...., n} with s, < 3, and
g/ < O (respectively. gr) = 0) for each i € {1..... n} with s; > 1. Now we
define for each i, je {l..... n} with i < j the determinant D;; by

[ @afs)) - @lsi) &8 1) - @l p) @ulsi ) o gals) gu(32) gl ) i
gn(Sl) gn(Si-»l) g,,(s,,:,]) f\’n(sj—l) gn(sj—rl) gn(sn) gn(.r;’) gn( 3'3) [
Using (ii), a simple calculation shows that for each i,je{l,...,n} with i <j

DD, =gy, gy — glr) gl . Since G is weak Chebyshev it
follows that
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(iii) foreachi,je{l,.., n withi <j
Lai( )il g0s) = g3 gi(ys) .

We assume that y, = t; with j odd (The other case follows analogously). By
scaling with positive scalars we may assume that for each a; == 0| g.()3) = 1,
since if g y;) = 0 for some i e {l,.... n} with a, 3= 0 the function g; would
have r» < 1 distinct zeros at ({s ,..-, 5.} U {J , JuD)i{s;}, which is a contradic-
tion. We remark that after this procedure statements (i)—(iii) remain valid.
Then from (iii) it follows that

(iv) for each i,je{l,...n} with { <j, g{3) < g(3.). Set I} =
{izs; <<yy,a; F 04 I, ={i:5;, >y, a; =0} and let & be such that | g,(»,)|
= min{' g;(3,)| : j € I,}. Then from (iv) it follows that

0 <gr) =% a8y — 3 1813
il s,
< (Z a; — ai). 8> =813 gu(1w): < 0.
el i€l ’

Ifl, = & or I, = 2 then g;(»,) = 0 and the function g; has » + 1 distinct
zeros at ({8 ..., S} Y {y1, ¥2})'{s:}, which is a contradiction. Therefore we
may assume that /, = @ and [, == @. Now, if there exists a number i € [,
with | g(y2)| <!g«(y.)l ; then we have

0<g(y) =3 a; gy — Y a, g(m)
(=

iely jel,
< (Z a; — Z a.i)l g1 <0,
el el

which is a contradiction.

Otherwise for each /e, we have " g,(y,)i =  g.(),) and therefore from (ii)
it follows that gy,) = —gi(),) and g(y;) = 1 = —g.(y,). But then from
(i) it follows that the function g; = g; is not identically zero and has at least
n + 1 distinct zeros at ({sq ..., S} Y {31, 3o . Jai).{s;, 51, which again is a
contradiction. This shows (c).

Now let e = 1. If x; =y, ., i = 0,..., n, then by (b) g, has » + 1 distinct
zeros at xg ,..., X, , which is a contradiction. Therefore we may assume that
x; < y; for some i. If y;; << x; for some j then by (b) the function g, has alter-
nating sign at the n — 3 points yy <<+ <3 <<y <0 <xp <Yy < 0 <
e 1f j << (respectively, at xp < =- <Tx; <C 1y << <y < X; < vt < Xy
if j > i). But this is a contradiction to (c). If x;,, << y; for some i then by (b)
again g, has alternating sign at the # + 4 points x, < =+ < X;p < )y <
- << ¥,, which is a contradiction to (c). Therefore we have x; <y, <
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RUNIY N 1. where the points x,_, and x,_, are omitted. Now we order
the points v, ..... A 1, and get points s, S, s N
§,.1 S._»such that

(— 1) tgys) 0.7 = l... i —2and (— 1) Ygls) -0.i-<20..m - |

Then by (a) and (b) we have the following.

(d) Ifs, = 3§, for some i={2..... 1} then gy(s,) = go(5;) =0and 5, ; <
sp= 8, <. I 5, = s, for some ie{2....n then gu($;) =: go(s;-) =0
and s, -2 §, =5, <08, IF sy =5, then go(s;) = 0 = gos,) and 5, << 5, .

lfanl = Sy 2 then gﬂ( e~ 1) N O B g(l(san) and Sn-l < §n—1 .

In the following argumentation, where we show that our assumption leads to
contradictions. (d) will be essential.

If sy Sa 8o mn 8y e $p-1 Sp-s. then g, has n - 1 distinct zeros at
£851 < S wvrs Sp_ais \\hich is a contradiction. Otherwise we consider the first
n— 1 points uy .....u,.4 from {s; ... 5,,, s o $aeee $,21 for which we have
Uy o U, and (—l)l' golu;) = = l....n — 1. Since each ge G,
hds at most n distinct zeros. there exnsts a pomt VE U .. i, such that G
is a Chebyshev system on {u ...., it,.;V:{ v}. Analogously as in the proof of
{c)(i) we can show that there exists a function g.€ G, g, -- 0, such that

2.{¥) == 0 and therefore g, has » distinct zeros at {u, ...., Uy 1) {ug).
If v =- iy . then there exist again n - | distinct points ¢y ..... 5 such that
T S [ S TS Uy IS, oty <o -7, and (—Digy(e) 0,

i= l....n 1. Again concluding as in the proof of (ci) we can show that g,
has a further zero in s,.., and therefore at least # - [ distinct zeros. which is
a contradiction.

If v = u; then we conclude as follows: In this case v - § or v s, for
some iz{2...n 1. Ifs; = § . then gy(») = 0. but analogously as in the
proof of (ci) we can show that g( 1) = 0. which leads to a contradiction.

If 5, = §;., then there exists again a set of » - [ distinct points {ry .....
Uyoqi. CONtAINING {1 ..... u,_,+ {1}, but not containing the point v, such that
ry << < v,y and o(—1) 1gyr) -0, i=1l...n -1, o= +1. Again
concluding as in the proof of (ci) we can show that g, has a further zero in
{00 weoes Upeq) Gty s iy U 1Y) and therefore at least # — 1 distinct zeros,
which is a contradiction.

Now let € = —1. If y; <7 x, ; for some /. then by (b), g, has alternating
sign at the # — 3 points v, <= -+ <C ¥, < X,y < '~ -2 X, . which is a contra-
diction to (c). If x,_, << v, for some /. then by (b) g, has alternating signs at
the n -~ 3 points x, <I = ~ X,y << ; < - <. 1,.which again is a contra-
diction to (c). Therefore we have x,_; - v, < x,_,. i = 0., n, where the
points x_, and x,_, are omltted We order the pomts \., ..... <Yy ey b, and
get points s, -~ § . T, ¢ such that (-~ ‘M(S) 0.0 Lo
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n—1l.and (—1)"1gys) =0,i=1,.,n — 1. Then by (a) and (b) we have
the following.

(e) Ifs, = § for some i €{l,..., n}, then gy(s;) = g45;) =0 and s,_; <
s; =38 <8_,. If § =s,, for some ic{l,..n. then g,(5;) =0 = g.(s,_;)
and s; < §; = 8,00 < $ieq .

Statement (e) will be essential in the following argumentation. We consider
the »n -+ | distinct points s, ,..., 5, for which (—1) 1 go(s) =0, i == l....,
n — 1. Since each g & G, g = 0, has at most # distinct zeros. there exists a
point ¥ €{s; ..., Sp4q). Ay ) = §;. such that G is a Chebyshev system on
{51 verer Suai: {33, If s, = & . then gy()) = 0, but analogously as in the proof
of (ci) we can show that g,()) == 0, which leads to a contradiction. If s, =- 5, ,
then analogously as in the proof of (ci) we can show that there exists a func-
tion g. =G, g, = 0, with n distinct zeros at {s; ...., Sp-1: {841. Furthermore
there exists a set of #» — | distinct points {r, ..... [,_q). containing f{s ...,
S.—1r:{»}, but not containing the point y, such that v, < - < r,., and
o(—Dtgyv,) = 0.i=1,..,n— 1,0 = +1. Then again concluding as in
the proof of (ci) we can show that g, has a further zero in {¢,..... Ut
CR - S+ 4 ¥]) and therefore g, has at least # - 1 distinct zeros. which is
a contradiction. This shows that (1) implies (2).

Now we show that (2) implies (1). First we show that (2) implies that G is
weak Chebyshev. Let n =— 1. If X is compact then we set £ = |. Since by (2)
there exists an alternation-element g, € P,( f), the function g, can not be
identically zero and g; > 0. Therefore ¢ = span{g,} is weak Chebyshev.
Therefore assume that G is not compact. Since X is locally compact it can be
imbedded in its one point compactification X U {20} and Cy(X) may be
considered as a subspace of C(X U {x0)}) by defining h(0) = 0 for each
he Cy(X). Now we choose a neighborhood basis (U,) of oc such that the
U.’s are open. The neighborhood basis ({)) is a directed system if we order
it by inclusion. By Tietze’s Lemma for each x there exists a function f, € C
(X U {o0}) such that f, == 1 on X" U, f(xc) =0 and 0 << f, = 1. Since for
each a we have f, ', € Cy(X) and from (2) it follows that there exists an alter-
nation-element g, € P,(f, ,x), obviously g, = 0 on X*U, and g, = 0, other-
wise g, would not be an alternation-element of f, . Therefore by scaling we
may assume that for each « g, = [. Since G is finite dimensional by
standard arguments (g,) has a subnet converging to a function g, =G,
g; == 0, such that g; = 0. This shows that G = span{g,! is weak Chebyshev.
If n > 2 then by a result of Deutsch et «f. [8] it follows that if for each
fe Cy(X) there exists an alternation-element g; = Pg(f). then G is weak
Chebyshev. This shows that (2) implies that G is weak Chebyshev.

Now we show that (2) implies that each g € G, g == 0, has at most z distinct
zeros in X. Assume that there exists a function g, G, g, = 0, which has
1 -~ 1 distinct zeros xg,.... x, in X{(x, < -+ < x, . if n 2> 2). By scaling we
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may assume that g, = 1. We show that there exists a function fin Cy(.X).
which has 0 and g, as A-elements. Since X is a Hausdorff space there exist
neighborhoods U, of x, ./ - O....#n, which are disjoint. Then there exists a
function fin Cy(X) with the properties | f =- L. (—1) f(x,) —= 1.7 -0....m
0= f(xv)  min{l -- go(x) Liforxve U, 0iff(x) - Lomax{—1 - gy(x). I}
flxy Oforxedl,. iff(xy) -land f(x) = Oforv=XU ;7 -0..
ni. Then the functionsfand,/‘ - g, obviously have n -- I alternating extreme
points X, ..... xpand! f! = 1 == f-—g, . Furthermore we have that 0 and
g, are in P f). otherwise thexe exists a funcnon s G such that f -

f.. This implies (—D(f — g)x;) <. (—1) f(\ ) and therefore (—71)'
g(x) < 0.7 - O...n For n=-1 this obviously is a contradiction and for
i1 - 2 we also get a contradiction, since by a result of Deutsch ¢t al. [8] and
Zielke [26]. in a weak Chebyshev subspace G there does not exist a function

£€ G and distinct points v, <+ -~ x, in X such that (—[) g(x,) < 0.
i - 0..... n. Therefore we have shown that (2) implies (1). and this completes
the proof.

In the special case X = [a. b], Theorem 1.2 has been proved in Niirnberger
and Sommer [18]. Their methods. however. do not apply to the general
situation of Theorem 1.2.

Let £ be a real vector space. G a subspace of £ and s a mapping from £
onto G. Then s is called quasi-linear, if for each f e E. g € G and real numbers
a and b we have s(af -- bg) = as(f) — bg.

Using Theorem 1.2 we now are in position to prove the following result
on the existence of continuous. quasi-linear selections for P, .

1.3. CorOLLARY. Let G be an n-dimensional weak Chebysher subspace of
C(X). where X is a subset of the real line if n - 2, such that each g =G,

== 0. has at most n distinct zeros in X. Then there exists a continuous. quasi-
linear selcction for Py, .

Proof. From the properties of G and Theorem [.2 it follows that each fin
C,(X) has a unique A-element g; in P.(f). We define the selection s by
s(fy - g, for each fin Cy(.Y).

(1) We show that s is continuous. If not. since G is finite dimensional.,
there exist f,, — fand s(f,,) — ¢ with s(f) == g and g € P,(f). Furthermore

for each m there exist n -~ 1 distinct points x,”..... X" X(xg" < e <
x, if n - 2) such that e (—1Y (f, — s(/ Ny = fo, — s(fL)i. @ =
O....n e, = -_1. Similarly. as in the proof of Theorem 1.2, by passing to
subsequences and taking limits we get e« —1V (f—glx;) - f—4g .
i —-0....n ¢ — --1, where x, ..... x,, are distinct points in X {(x, < - - x,

if # 2). Furthermore, since for each ms(f.,) € Pi(f,.) and f,, — f we have
g€ P f). asitis well known. Therefore g is an A-element of f with s(f) -- <.
which is a contradiction to the uniqueness of A4-elements.
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(2) We show that s is quasi-linear. Let fe Cy(X),ge G and real
numbers ¢ and b be given. Since by definition s(f) is an A-element of f,
there exist distinct points xg ,.... x, in X (x, < - < x, if n = 2) such that

(=D (f—s(Nx) =lf—s(F), i=0,..n ¢= +1. Then

e(— 1 (af +— bg — (as(f) -+ bg))(x))
=ae(—1) (f — s(fN(x) =a f—s(f) =¢& af — as(Ni
=&V af + bg — (as(f) - bg) . i=0,.né=—1,e==+I.

Furthermore, as it is well known, we have as(f) — bgcaPy(f) — bg =
Pi(af — bg). Therefore as(f) = bg is an A-element of af - bg. But since by
definition s(af -~ bg) is also an A-element of af — bg, if follows from the
uniqueness of A-elements that s(af — bg) = as(f) -*- bg. This completes the
proof.

We remark that for n = 1 (G = span{g,}) Corollary 1.3 also holds, if we
only assume that G is weak Chebyshev and bd Z(g,) contains at most one
point. Because in this case we consider the metric projection from Cy(X) onto
the restriction of G to X, where X := (X.Z(g,)) Y bd Z(g,), and extend the
existing continuous selection (according to Corollary 1.3) by zero to X.

Corollary 1.3 has been proved for continuous selections of P; by Lazar
et al. [13] for X compact and n = 1, and by Niirnberger and Sommer [18]
for X' - [a. b] and n arbitrary. from which a result of Brown [7] for X =
[—1.1]and n = 5 follows, using different kinds of approaches. Nevertheless
their arguments do not apply to the general situation of Corollary 1.3.

In the case X = [a. b] Corollary 1.3 was the crucial key in Niirnberger and
Sommer [19] to give a complete characterization of continuous selections of
the metric projection for spline functions.

We remark that the conditions on G in Corollary 1.3 are essential in a
certain sense. because in Niirnberger [16]. it is shown that a necessary
condition for an nr-dimensional subspace G in Cla. b}. which admits a
continuous selection for P; . is that G is weak Chebyshev. Furthermore
Sommer [23] has shown that a necessary condition for an s-dimensional
weak Chebyshev subspace G in Cla, b}, for which no g € G, g == 0. vanishes
on an interval and which admits a continuous selection for P . is that each
g <= G, g = 0. has at most » distinct zeros in [a. b].

Finally we give some examples of n-dimensional subspaces G in Cy(X).
which fulfill the condition in Theorem 1.2 and Corollary 1.3.

1.7. ExamPLES. (1) Several examples of #n-dimensional subspaces in
Cla. b]. which fulfill the conditions in Theorem [.2 and Corollary 1.3, can be
found in Brown [7] and Niirnberger and Sommer [18]. A standard example is

G = span{g, ,..., g,; C C[0, 1]. where g{x) = xi,i=1,....n
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(2) Let (g ... g, be a Chebyshev system of continuous real-valued

functions on R and let g, be in Cy(R) such that g,g, e Cy(R). i - 1.... a. and
go(») =0 for some y =R and g(x) = 0 for xe R.{y) (e.g.. gfx) =~ x!
i=1... n.and go(x) = (L'e) x2for xe [—1. 1] and g(x) = 1 'e” elsewhere).

Then G - span{g,g, ..... g0 8.+ 1s an n-dimensional subspace of C\(R). und
by standard arguments (compare Jones and Karlovitz [I1]) G fulfills the
conditions in Theorem 1.2 and Corollary 1.3. and therefore we have the
uniqueness of alternation-elements and the existence of a continuous.
quasi-linear selection for P, . The same holds. if we consider the restriction
of G to any closed subset of the real line. containing at least n - [ distinct
points. Similar arguments give us examples of n-dimensional subspaces of
Cy(X) for arbitrary (not necessarily closed) subsets of the real line.

2. NONLINEAR CASE

As we have seen in Section |. not every n-dimensional subspace G in a
normed linear space admits a continuous selection for P, . However, this
(and even more) is true for inner-radial-continuous selections for P (see [17]).
But the situation is completely different. if we consider nonlinear sets. as we
will see in the following.

First we give a necessary condition for the existence of inner-radial-
continuous selections for P, in arbitrary normed linear spaces.

A set S in a normed linear space E is called star shaped about x, in E. if for
each x in S we have [x,. x] C S.

2.1. THEOREM. Let G be a proximinal subset in a normed linear space E.
If there exists an inner-radial-continuous selection s for P then for each x in E
and each g, in P.(x) we have

[20. 5(x)] C S(x. d(x. G).

Proof. Let s be an inner-radial-continuous selection for P; and v = E.
80 € Ps(x). 0 < g < 1. We show that for each 0 < b <C ] we have

(1) s(gy — blx — go)) € S(x. d(x, G)) N S(go — blx — gp). dlg, ~ b
(x — go) G)). Let O < b < 1 be given. Then, of course, s(g, — b(x — g,)) is
in S(g, blx — g).dlg, — b(x — g,). G)). Therefore it remains to show
that s(g, - b(x — gy)) is in S(x, d(x. G)). Since obviously d(x, G) == x — 5
(go — B(x — g,))| we show that; x — s(g, — b(x — g,)) < d(x. G). Assume
that

(2) x— (g by — gy - d(x. G). Since g, € P.(x). by the proot
of Lemma 2.1 in Singer [21, pp. 364] go€ P(g, *- b(x — gy)). Furthermore
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(3) bd(x.G) =b; x —gy: = .8 — blx —g) —g| =d(g —b
(X - gO)’ G)

Then by (2) and (3) it follows that

gy — blx — go) — 5(go + blx — g
=i(x — g — blx — go)) — (x — s5(go + blx — &))"
Z|x —5(gy— bx —gy)) —: x — go — blx — g)
>d(x. G) — (I — b)d(x, G) = bd(x. G) = d(g, -~ blx — g,). G).

But this is a contradiction to the fact that s(g, — b(x — gy)) € Ps(g, — b
(x — g,))- Therefore we have that s(g, — b(x — g,)) € S(x. d(x, G)) and (1)
(1) holds.

Since by an observation of Klee [12] (for a proof see Brosowski and Deutsch
[6]) the set S(x.d(x, G)) N .S(gy + blx — go)» d(gy -+ b(x — g,), G)) is star
shaped about g, . from (1) it follows that for each 0 < b < | ag, — (1 — a)
5(gy + b(x — go)) € S{x. d(x, G) (0 < a < 1)

Therefore foreach 0 < b < 1

(4 'x—(agy — (I —a)s(ge+ blx — &) =d(x. G)0 << a < 1).

Now let (x,) be a sequence in {gy + b(x — g¢): 0 < b < 13, ie., x, = g, +
b, (x — g,) with 0 << b, <C 1, which converges to a point x € E. Then by (4)
for each n we have

'x — (ag, — (1 — a) s(x,), = d(x, G).
Since s is inner-radial-continuous and (x,) converges to x we have
fx — (agy — (1 — a) s(x)] = d(x, G).

This is true for each 0 <Ca <1 and therefore ag, — (I — a) s(x) is in
S(x, d(x, G)), i.e.. [gy, s(x)] C S(x, d(x. G)).

This completes the proof.

Theorem 2.1 has been proved for continuous selections in Niirnberger [17].

2.2. COROLLARY. Let G be the boundary of a ball in a normed linear
space E. Then there exists no inner-radial-continuous (in particular no con-
tinuous) selection s for Pg .

Proof. Llet G =S(xy.r) ={geE:| x,—g  =r} for some x,€ E and
r >>0. Then G is proximinal. since for each xe€ £ we have g, Pu(x),
where g, = x5~ (ri{ x — xy )(x — x,), because 'x—g,, =!x — x, —
(F'x—xg Mx—xp) =1 x—xy —r' ="x—x, —!'x,—g| <lx—g;
for each geG. Since Pg(x,) == G we have that s(x,) and 2x, — s(x,)
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are in Pg(x,) but obviously [2x, — s(xy). s{x,)] @ S(x,. d(x, . G, By
Theorem 2.1 we get a contradiction. This completes the proof.

Furthermore using Theorem 2.1 it easily follows that a proximinal subset
G in a strictly convex space admits an inner-radial-continuous selection for
P if and only if G is Chebyshev. This result can be applied to the generalized
rational functions R, , in L,-spaces (I <. p -2 o). which are always proxi-
minal, but Chebyshev if and only if # 0 (see Blatter [I] and Efimov and
Stechkin [8]).

Next we consider the metric projection for exponential sums. An exponen-
tial sum is a function g € Cla. b] which can be represented as g(x) — ELL
pi(x) et*. where p; e Cla. b] is a polynomial of degree d; and ¢, ..... t; are
distinct. The integer Z;,l (d; — 1) is called the degree of g. By E, we denote
the set of all exponential sums with degree less of equal to #.

In contrary to the rational functions and the usual exponential sums,
which are Chebyshev in Cla. b] (see Meinardus [15]), the exponential sums
E, ., as been defined here, are proximinal but not Chebyshev in Cla, 6] for
n -~ 2. (see Braess [2, pp. 315]). They represent a frequently investigated non-
linear class of functions.

The next result gives a characterization of inner-radial-continuous selec-
tions for P .

2.3. THEOREM. The metric projection from Cla. b] onto the set of exponen-
tial sums E, has an inner-radial-continuous selection if an only if n — 1.

Proof. 1fn -— 1 then E, is Chebyshev and therefore the metric projection
Py has an inner-radial-continuous selection. 1f # =- 2 then from the proof of
Theorem 8.7 in Braess [3] it can be seen that there exists a continuously
differentiable function fe Cla. b]. which has two distinct best approxima-
tions g, and g, in Pg (f). We construct two sequences (f,.) (respectively,
(f.2)). which are in {g, — a(f —g):0="a I 1) (respectively. in |g,
a(/ — g): 0 a < 1Y suchthatf, —f. f., —fand PE"(f,,,) = {g,} (respec-
tively. Pr (f,.) = {g,}). This shows that there does not exist an inner-radial-
continuoﬁls selection for PE, . because if there were an inner-radial-continuous
selection s for P . then we would have s(f,) == g, and s(f,,) = g, for each m
and, since f,, %f'andf,,, — f.5(f) := g, and s(f) = g, . But this is impossible.
since g, = g..

We define for each m functions £, 1= g; — (I — Lim)(f — g,) and f,, : =
g, — (1 — U'm)(f — g,). We show that Pg(f,) = {g, for each m. Since
g, € P (/). by the proof of Lemma 2.1 in Singer [21] g, € P (f,,) for each
m. Assume there exists a function g e PEn(_f;,,) with &, == g, . Then g, = PE”(f)
because.if f—g, < [f—g . .then{(l —(I'm)) f—g ' ~='f,—g 1=
fo — & g (T —g) — & = — &) — (Lm(f

@) - =& —Umf—-g if—a —0mpf—g (-
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, which is a contradicion. By Satz | in Braess [2] there exist
a<x, < <Xp<b such that «(—1) (f—g)(x) =|f— & i =
0....nn— l.e= £l Then (I — (I/m));if —gi =.if — & . =|fu — &1
= 6(*1) (S — 8)x) = e(— 1) (f — @)x) — e(— 1) (Iim)(f — g(x)) =
If =& — (=1 Um)f —g)(x) = If — gl — 6(—1)‘(1 m)(f - gNx,)
> f-—g1 —(Umif—g =0 —Um) f— gl

Now e(—1Y (f —g)x) = f—g&!l = f— & =1V (f £)(x;) and
therefore (g, — §)(x) =0, i =0...., n. Since the points a < x;, < - <
X,y < b are extreme points of f— g, andf— &1, we have (f' — g)(x;) =

=(f" — g)x;), i = 1,..,n Then g, — § has at least 2n zeros, counting
multiplicities. and at most degree 2n. but by Meinardus [15, pp. 167], this is
impossible. Therefore Pg (f,.) = {g} and analogously, P ( fu) = {gs for
each m. This completes the proof.
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